Stat 155 Lecture 6 Notes

Daniel Raban

February 6, 2018

1 Domination and the Principle of Indifference

1.1 Domination by multiple rows or columns

Recall the concept of dominated rows or columns in a payoff matrix from last lecture.

Definition 1.1. A pure strategy e_j for player 2 is *dominated* by $e_{i'}$ in the payoff matrix A if for all $i \in \{1, \ldots, m\}$, $a_{i,j} \leq a_{i,j'}$.

We can extend this idea to include comparisons with multiple columns.

Definition 1.2. A pure strategy e_j for player 2 is *dominated* by columns e_{j_1}, \ldots, e_{j_k} in the payoff matrix A if there is a convex combination $y \in \Delta_n$ with $y_j = 0$ and $\{\ell : y_\ell \neq 0\} = \{j_1, \ldots, j_k\}$ such that, for all $i \in \{1, \ldots, m\}$,

$$a_{i,j} \ge \sum_{\ell=1}^n a_{i,\ell} y_\ell.$$

Theorem 1.1. If a pure strategy e_j is dominated by columns e_{j_1}, \ldots, e_{j_k} , then we can remove column j from the matrix; i.e. there is an optimal strategy for Player 2 that sets $y_j = 0$.

Proof. Let $\tilde{x} \in \Delta_m$ and $\tilde{y} \in \Delta_n$. Then

$$\begin{split} \tilde{x}^{\top} A \tilde{y} &= \sum_{\ell=1}^{n} \sum_{i=1}^{m} \tilde{x}_{i} a_{i,\ell} \tilde{y}_{\ell} \\ &= \sum_{\ell \in \{1,\dots,n\} \setminus \{j\}} \sum_{i=1}^{m} \tilde{x}_{i} a_{i,j} \tilde{y}_{\ell} + \sum_{i=1}^{m} \tilde{x}_{i} a_{i,\ell} \tilde{y}_{j} \\ &\geq \sum_{\ell \in \{1,\dots,n\} \setminus \{j\}} \sum_{i=1}^{m} \tilde{x}_{i} a_{i,j} \tilde{y}_{\ell} + \sum_{i=1}^{m} \tilde{x}_{i} \left(\sum_{s=1}^{k} a_{i,js} y_{js} \right) \tilde{y}_{j} \end{split}$$

$$= \sum_{\ell \in \{1,\dots,n\} \setminus \{j\}} \sum_{i=1}^m \tilde{x}_i a_{i,j} \tilde{y}_\ell + \sum_{s=1}^k \sum_{i=1}^m \tilde{x}_i a_{i,j_s} (y_{j_s} \tilde{y}_j + y_{j_s})$$
$$= \tilde{x}^\top A \tilde{\tilde{y}},$$

where

$$\tilde{\tilde{y}} = \begin{cases} \tilde{y}_I & \ell \in \{1, \dots, n\} \setminus \{j_1, \dots, j_k, j\} \\ 0 & \ell = j \\ y_{j_s} \tilde{y}_j + y_{j_s} & \ell = j_s, s \in \{1, \dots, k\}. \quad \Box \end{cases}$$

The same holds for dominated columns.

1.2 The principle of indifference

We've seen a few examples where the optimal mixed strategy for one player leads to a best response from the other that is indifferent between actions. This is a general principle.

Theorem 1.2. Suppose a game with payoff matrix $A \in \mathbb{R}^{m \times n}$ has value V. If $x \in \Delta_m$ and $y \in \Delta_n$ are optimal strategies for Players 1 and 2, then

$$\begin{split} \sum_{\ell=1}^m x_\ell a_{\ell,j} &\geq V \quad \forall j, \qquad \sum_{\ell=1}^n y_\ell a_{i,\ell} \geq V \quad \forall i, \\ \sum_{\ell=1}^m x_\ell a_{\ell,j} &= V \quad if \; y_j > 0, \qquad \sum_{\ell=1}^n y_\ell a_{i,\ell} = V \quad if \; x_i > 0. \end{split}$$

This means that if one player is playing optimally, any action that has positive weight in the other player's optimal mixed strategy is a suitable response. It implies that any mixture of these "active actions" is a suitable response.

Proof. To prove the two inequalities, note that

$$V = \min_{y' \in \Delta_n} x^\top A y' \le x^\top A e_j = \sum_{\ell=1}^m x_\ell a_{\ell,j},$$
$$V = \max_{x' \in \Delta_m} (x')^\top A y \ge e_i^\top A y = \sum_{\ell=1}^n x_\ell a_{i,\ell}.$$

Recalling that $\sum_{i=1}^{m} x_i = \sum_{j=1}^{n} y_j = 1$, the inequalities give us

$$V = \sum_{j=1}^{n} V y_j \le \sum_{j=1}^{n} \sum_{i=1}^{m} x_i a_{i,j} y_j \le \sum_{i=1}^{m} V x_i = V.$$

If either of the stated equalities did not hold, then we would have strict inequalities here, implying that V < V.

1.3 Using the principle of indifference

Suppose we have a payoff matrix A, and we suspect that an optimal strategy for Player 1 has certain components positive, say $x_1 > 0, x_3 > 0$. Then we can solve the corresponding "indifference equalities" to find y, say:

$$\sum_{\ell=1}^{n} a_{1,\ell} y_{\ell} = V, \quad \sum_{\ell=1}^{n} a_{3,\ell} y_{\ell} = V$$

Example 1.1. Recall the game Plus One with payoff matrix

	1	2	3	4	5	6	•••	n-1	n
1	0	-1	2	2	2	2	•••	2	2
								2	
3	-2	1	0	-1	2	2	• • •	2	2
4	-2	-2	1	0	-1	2	•••	2	2
5	-2	-2	-2	1	0	-1	•••	2	2
6	-2	-2	-2	-2	1	0	• • •	2	2
:	÷	÷	÷	÷	·	·	·	·	
n-1	-2	-2	-2	-2	-2	-2	۰.	0	-1
n	-2	-2	-2	-2	-2	-2	•••	1	0

and reduced (after removing dominated rows and columns) payoff matrix

$$\begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -1 \\ -2 & 1 & 0 \end{pmatrix}.$$

We suspect that $x_1, x_2, x_3 > 0$, so we solve

$$Ay = \begin{pmatrix} V \\ V \\ V \end{pmatrix}$$

to get that

$$y = \begin{pmatrix} 1/4\\ 1/2\\ 1/4 \end{pmatrix}, \quad V = 0.$$